MOTHER TERESA WOMEN'S UNIVERSITY

KODAIKANAL

DEPARTMENT OF MATHEMATICS

M.Sc. MATHEMATICS

SYLLABUS TO BE IMPLEMENTED FROM THE ACADEMIC YEAR 2023-2024

(Choice Based Credit System)

As per the Guidelines Tamil Nadu State Council for Higher Education (TANSCHE)

Mother Teresa Women's University, Kodaikanal Department of Mathematics Choice Based Credit System (CBCS) (2023-2024 onwards) M.Sc. Mathematics

1. About the Programme:

The M. Sc Mathematics curriculum is dedicated to preparing students for productive careers after

- 3-5 years of graduation.
- 1. Apply their knowledge in modern industry or teaching or secure acceptance in High quality

graduate programs in mathematics

- 2. Development in their chosen profession and/or progress toward an advanced degree
- 3. The trust and respect of others as effective and ethical team members.
- 4. Graduates will become effective collaborators and innovators, leading or participating In efforts to address social, technical and business challenges.
- 5. Promote the culture of interdisciplinary research among all disciplines and applied Mathematics
- 2 Programme Educational Objectives (PEOs)
 - 3.. Eligibility :B.Sc. Mathematics , B.Sc. Applied Mathematics B.Sc. Mathematics with Computer Applications

General Guidelines for PG Programme:

1. Duration: The programme shall extend through a period of 4 consecutive semesters and the duration of a semester shall normally be 90 days or 450 hours. Examinations shall be conducted at the end of each semester for the respective subjects.

2. Medium of Instruction: English

3. Evaluation: Evaluation of the candidates shall be through Internal and External assessment. The ratio of formative and summative assessment should be 25:75 for both Core and Elective papers.

Evaluation Pattern

	Theory		Practical	
	Min Max		Min	Max
Internal	13	25	13	25
External	38	75	38	75

- Internal (Theory): Test (15) + Assignment (5) + Seminar/Quiz (5) = 25
- External Theory: 75

Written Examination : Theory Paper (Bloom's Taxonomy based)

Question paper Model

Intended Learning Skills	Maximum 75 Marks Passing Minimum: 50% Duration : Three Hours			
Part -A(10x 2 = 20 Marks)				
Ans	wer ALL questions			
Each Q	Question carries 2mark			
Memory Recall / Example/				
Counter Example / Knowledge about the	Two questions from each UNIT			
Concepts/ Understanding				
Question 1 to Question 10				
Part – Ans Each qu	B (5 x 5 = 25 Marks) wer ALL questions estions carries 5 Marks			
	Either-or Type			
Descriptions/ Application (problems)	Both parts of each question from the same UNIT			
	Question 11(a) or 11(b)			
	То			
	Question 15(a) or 15(b)			

Part-C (3x 10 = 30 Marks) Answer any THREE questions Each question carries 10 Marks			
Analysis /Synthesis / Evaluation	There shall be FIVE questions covering all the five units		
	Question 16 to Question 20		

Each question should carry the course outcome and cognitive level

Different Types of Courses

Project Report

A student should select a topic for the Project Work at the end of third semester itself and submit the Project Report at the end of the fourth semester. The Project Report shall not exceed 75 typed pages in Times New Roman 12 font size with 1.5 line space.

Evaluation:

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination. The Project Work carries 100 marks (Internal: 25 Marks, Viva: 75 Marks)

Minimum credits required to pass - 91.

5.Conversion of Marks to Grade Points and letter Grade(Performence in a Course/Paper)

Range of	Grade Points	Letter Grade	Description
Marks			
90-100	9.00-10.00	0	Outstabding
80-89	8.0-8.9	D ⁺	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	\mathbf{A}^+	VeryGood
60-69	6.0-6.9	Α	Good

50-59	5.0-5.9	В	Average
00-49	0.0-4.9	U	Re-Appear
ABSENT	0.0	AAA	ABSENT

5. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination, Students with 71% to 74% of attendance must apply for condonation in the prescribed form with prescribed fee. Students with 65% to 70% of attendance must apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students with attended less than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, principal and the Registrar of the University.

6.Maternity Leave – The student who avails maternity leave may be considered to appear for the examination with the approval of Staff i/c, Head of the Department, Controller of Examination and The Registrar.

7.Any Other Information:

In addition to the above regulations, any other common regulations pertaining to the PG Programmes are also applicable for this programme

Post Graduate Programme

Programme Outcomes:

PO1: Disciplinary Knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an Post graduate programme of study.

PO2: Critical Thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.

PO3: Problem Solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's earning to real life situations.

PO4: Analytical & Scientific Reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples and addressing opposing viewpoints.

PO5: Research related skills: Ability to analyse, interpret and draw conclusions from quantitative / qualitative data; and critically evaluate ideas, evidence, and experiences from an open minded and reasoned research perspective; Sense of inquiry and capability for asking relevant questions / problem arising / synthesizing / articulating / ability to recognize cause and effect relationships / define problems. Formulate hypothesis, Test / analyse / Interpret the results and derive conclusion, formulation and designing mathematical models

PO6: Self-directed & Lifelong Learning: Ability to work independently, identify and manage a project. Ability to acquire knowledge and skills, including "learning how to learn", through self-placed and self-directed learning aimed at personal development, meeting economic, social and cultural objectives.

M.Sc Mathematics

Programme Specific Outcomes:

PSO1: Acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics.

PSO2: Understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.

PSO3: To prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions.

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skills, which will facilitate startups and high potential organizations. To encourage practices grounded in research that comply with employment laws, leading the organization towards growth and development.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) and Programme Specific Outcomes (PSOs) can be carried out accordingly, assigning the appropriate level in the grids:

	POs				PSOs				
		2	3	4	5	6	 1	2	•••
CLO1									
CLO2									
CLO3									
CLO4									
CLO5									

3. Learning and Teaching Activities

3.1 Topic wise Delivery method

Hour Count	Торіс	Unit	Mode of Delivery

3.2 Work Load

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

Activity	Quantity	Workload periods
Lectures	60	60
Tutorials	15	15
Assignments	5	5

Cycle Test or similar	2	4
Model Test or similar	1	3
University Exam Preparation	1	3
	Total	90 periods

1. Tutorial Activities

Tutorial Count	Торіс

2. Laboratory Activities

3. Field Study Activities

4. Assessment Activities

Assessment Principles:

Assessment for this course is based on the following principles

- 1. Assessment must encourage and reinforce learning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessment must enable robust and fair judgments about student performance.
- 4. Assessment practice must be fair and equitable to students and give them the opportunity to demonstrate what they learned.
- 5. Assessment must maintain academic standards.

Assessment Details:

Assessment Item	Distributed Due Date	Weightage	Cumulative Weightage
Assignment 1	3 rd week	2%	2%
Assignment 2	6 th Week	2%	4%
Cycle Test – I	7 th Week	6%	10%
Assignment 3	8 th Week	2%	12%
Assignment 4	11 th Week	2%	14%
Cycle Test – II	12 th Week	6%	20%
Assignment 5	14 th Week	2%	22%

Model Exam	15 th Week	13%	35%
Attendance	All weeks as per the Academic Calendar	5%	40%
University Exam	17 th Week	60%	100%

TEACHING METHODOLOGIES

Traditional Teaching methods like Chalk and Board, Virtual Classroom, LCD projector, Smart Class, Video Conference, Guest Lectures.

Asking students to formulate a problem from a topic covered in a week's time

Assignment, Class Test, Slip test

Asking students to use state-of-the-art technologies/software to solve problems

Applications, Use of Mathematical software

Introducing students to applications before teaching the theory

Training students to engage in self-study without relying on faculty (for example – library and internet search, manual and handbook usage, etc.)

Library, Net Surfing, Manuals, NPTEL Course Materials published in the website Other university websites.

Faculty Course File Structure

CONTENTS

- a. Academic Schedule
- b. Students Name List
- c. Time Table
- d. Syllabus
- e. Lesson Plan
- f. Staff Workload
- g. Course Design(content, Course Outcomes(COs), Delivery method, mapping of COs with Programme Outcomes(POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)
- h. Sample CO Assessment Tools.

- i. Faculty Course Assessment Report(FCAR)
- j. Course Evaluation Sheet
- k. Teaching Materials(PPT, OHP etc)
- l. Lecture Notes
- m. Home Assignment Questions
- n. Tutorial Sheets
- o. Remedial Class Record, if any.
- p. Projects related to the Course
- q. Laboratory Experiments related to the Courses
- r. Internal Question Paper
- s. External Question Paper
- t. Sample Home Assignment Answer Sheets
- u. Three best, three middle level and three average Answer sheets
- v. Result Analysis (CO wise and whole class)
- w. Question Bank for Higher studies Preparation (GATE/Placement)
- x. List of mentees and their academic achievements

Credit Distribution for PG Programme in Mathematics

M.Sc. Mathematics

M.Sc. Mathematics- Curriculum

PART	Course Code	Course Title	Credits	Hours per week(L/T /P)	CIA	ESE	Total
Semester	I				ſ	1	1
PART A	P23MTT11	CC1 - Algebraic Structures	5	7(6L+1T)	25	75	100
	P23MTT12	CC2 - Real Analysis I	5	7(6L+1T)	25	75	100
	P23MTT13	CC3 - Ordinary Differential Equations	4	6(5L+1T)	25	75	100
	P23MTE1A / P23MTE1B / P23MTE1C	 Elective-I (Departmental Elective) – a. Number Theory and Cryptography b. Graph Theory and Applications c. Formal Languages and Automata Theory d. Programming in C++ and Numerical Methods 	3	5(4L+1T)	25	75	100
	P23WSG11	Elective - II (Generic Elective - Women Empowerment)	3	5(4L+1T)	25	75	100
		Total	20	30	-	_	500
Semester	II		11				1
PART A	P23MTT21	CC4 - Advanced Algebra	5	6(5L+1T)	25	75	100
	D22MTT22	CC5 Real Analysis II	5	6(5L+1T)	25	75	100
	F 23WIT T 22	CCG P (1 P)	5	O(JL+1T)	25	75	100
	P23M1123	Equations	4	6(5L+11 ⁻)	25	/5	100
	P23MTE2A / P23MTE2B / P23MTE2C / P23MTE2D	Elective III (Department Elective) – a. LIE Groups and ANDLIE Algebra b. Mathematical Programming c. Fuzzy Sets and their	3	4(3L+1T)	25	75	100

	Applications					
	d. Discrete Mathematics					
	a.					
P23CSG22	Elective – IV (Generic Elective - Cyber Security	3	4(3L+2T)	25	75	100
P23MTN21	NME-Skill Enhancement Course -SEC 1	2	4	Internal Assessment		100
	Total	22	30	-	-	600

Elective Courses

Semester I : Elective I to be chosen from Group A

Group A: (PM/AP/IC/ITC)

- 1..Number Theory and Cryptography
- 2. Graph Theory and Applications
- 3. Formal Languages and Automata Theory
- 4. Programming in C++ and Numerical Methods

Semester II : Elective III to be chosen from Group B

Group B:(PM/AP/IC/ITC)

- 1. Lie Groups and Lie Algebras
- 2. Mathematical Programming
- 3. Fuzzy Sets and Their Applications
- 4. Discrete Mathematics

SEMESTER -II -NME-SEC I

GROUP-C

NME -Skill Enhancement Courses -SEC-I

Students from other Departments may also choose any one of the following as NME

NME -I: Mathematics for Life Sciences/ Differential Equations

NME-II: Mathematics for Social Sciences/ Numerical Methods NME -III: Statistics for Life and Social Sciences/ Statistics NME -IV: Game Theory and Strategy/ Operation Research NME -V: History of Mathematics/ Mathematical Aptitude

Outside class hours

- Health, Yoga and Physical Fitness
- Library Information access and utilization
- Employability Training
- Students Social Responsibility

Testing Pattern (25+75)

Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

Computer Laboratory Courses: For Computer Laboratory oriented Courses, there shall be two tests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour. There is no improvement for CIA of both theory and laboratory, and, also for University End Semester Examination.

(v) Institution-Industry-Interaction(Industry aligned Courses)

Programmes /course work/ field study/ Modelling the Industry Problem/ Statistical Analysis / Commerce-Industry related problems / MoU with Industry and the like activities.

SYLLABUS M.Sc. MATHEMATICS

Title of the	e Course	ALGEBRAIC STURUCTURES								
Paper Nur	nber	CORE I								
Category	Core	Year	Ι	Credits	5	Cou	rse	P23MTT11		
		Semester	Ι			Cod	e			
Instruction	nal Hours	Lecture	Tuto	orial	Lab Prac	tice	Tota	al		
per week		6	1				7			
Pre-requis	ite	UG level N	Modern	Algebra						
Objectives	of the	To introdu	ice the	concepts ar	nd to devel	op wo	orking	g knowledge on		
Course		class equat	tion, sol	lvability of	groups, fi	nite al	belian	n groups, linear		
		transforma	tions, re	al quadratic	e forms					
UNIT-I : Counting Principle - Class equation for finite groups and										
		its applicat	ions - S	ylow's theor	rems (For tl	heoren	n 2.12	2.1, First proof		
		only).								
		Chapter 2	Section	ns 2.11 and	l 2.12 (Omi	it Lem	ıma 2	2.12.5)		
		UNIT II - Direct products - Finite abelian groups- Modules								
		Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only)								
		Chapter 4	: Sectio	n 4.5						
		UNIT-III	Linear	Transforma	ations: Can	onical	form	s –Triangular		
		form - Nilp	otent tr	ansformatio	ons.					
		Chapter 6	: Sectio	ns 6.4, 6.5						
		UNIT-IV : Jordan form - Rational canonical form.								
		Chapter 6	: Section	ons 6.6 and	6.7					
				-						
		UNIT-V: Trace and transpose - Hermitian, unitary, normal								
		transforma	tions, re	al quadratic	e form.					
		Chapter 6	: Section	ons 6.8, 6.1	10 and 6.11	l (Om i	it 6.9))		

Extended Professional	Questions related to the above topics, from various competitive					
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC					
internal component	/ others to be solved					
only, Not to be included	(To be discussed during the Tutorial hour)					
in the External						
Examination question						
paper)						
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional					
course	Competency, Professional Communication and Transferrable Skill					
Recommended Text	I.N. Herstein. Topics in Algebra (II Edition) Wiley Eastern Limited,					
	New Delhi 2002.					
Reference Books	1. M.Artin, <i>Algebra</i> , Prentice Hall of India, 1991.					
	2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, <i>Basic Abstract</i>					
	Algebra (II Edition) Cambridge University Press, 1997. (Indian					
	Edition)					
	3. I.S.Luther and I.B.S.Passi, <i>Algebra</i> , Vol. I –Groups(1996); Vol.					
	II Rings, Narosa Publishing House, New Delhi, 1999					
	4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of					
	Abstract Algebra, McGraw Hill (International Edition), New					
	York. 1997.					
	5. N.Jacobson, <i>Basic Algebra</i> , Vol. I & II W.H.Freeman (1980);					
	also published by Hindustan Publishing Company, New Delhi.					
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,					
e-Learning Source	http://www.opensource.org, www.algebra.com					

Students will be able to

CLO 1: Recall basic counting principle, define class equations to solve problems, explain

Sylow's theorems and apply the theorem to find number of Sylow subgroups

CLO 2: Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules

CLO 3: Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nil potence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nilpotent transformation relating nil potence with invariants.

CLO 4: Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation.

CLO 5: Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Title of the	e Course	REAL ANALYSIS I								
Paper Nur	nber	CORE II	CORE II							
Category	Core	Year	Ι		Credits	5	Cou	rse	P23MTT12	
		Semester	Ι				Cod	e		
Instruction	nal	Lecture		Tuto	orial	Lab Prac	tice	Tot	al	
Hours		6		1				7		
per week										
Pre-requis	ite	UG level 1	eal a	nalysi	s concepts					
Objectives	of the	To work of	comfe	ortabl	y with func	tions of bo	oundec	l vari	iation, Riemann-	
Course		Stieltjes In	tegra	tion, c	convergence	e of infinite	e serie	s, infi	nite product and	
		uniform c	onve	rgence	e and its	interplay	betwe	een v	various limiting	
		operations.								
Course Ou	ıtline	UNIT-I:	Func	tions	of bounde	d variatio	n - Int	roduc	ction - Properties	
		of monoto	onic	functi	ons - Fune	ctions of	bound	ed v	ariation - Total	
		variation -	Add	litive	property of	total varia	tion -	Tota	l variation on [a,	
		x] as a fun	ction	of x -	Functions	of bounde	d vari	ation	expressed as the	
		difference of two increasing functions - Continuous func								
		bounded va	ariati	on.						
		Chapter – 6 : Sections 6.1 to 6.8								
		Infinite Series : Absolute and conditional convergence - Dirichlet's								
		test and A	bel's	test -	Rearrangen	nent of ser	ies - 1	Riem	ann's theorem on	
		conditional	lly co	onverg	ent series.					
		Chapter 8	Sect	ions	8.8, 8.15, 8.	17, 8.18				
		UNIT-II :	The]	Riema	nn - Stielt	jes Integra	l - Int	roduc	ction - Notation -	
		The definit	ion o	of the	Riemann -	Stieltjes in	ntegra	l - Li	near Properties -	
		Integration	by	parts-	Change of	of variable	in a	Riei	mann - Stieltjes	
		integral -	Red	uction	to a Rie	mann Inte	gral –	- Eu	ler's summation	
		formula - Monotonically increasing integrators, Upper and lower								
		integrals - Additive and linearity properties of upper, lower integrals -								
		Riemann's condition Comparison theorem								
		Chapter - 7 : Sections 7.1 to 7.14								
		UNIT-III	: Th	e Riei	nann-Stiel	tjes Integr	al - Ii	ntegra	ators of bounded	
		variation-S	uffic	ient c	onditions f	or the exis	stence	of R	liemann-Stieltjes	
		integrals-N	leces	sary c	onditions fo	or the exist	ence o	of RS	integrals- Mean	
		value theo	rems	-inte	grals as a	function	of th	e int	erval – Second	
		fundament	al the	eorem	of integral	calculus-O	Change	e of v	variable -Second	
		Mean Va	lue	Theor	em for F	Riemann i	ntegra	ıl- R	Riemann-Stieltjes	
		integrals de	epend	ling o	n a paramet	er. Differe	ntiatio	on und	ler integral sign-	
		Lebesgue	criter	iaon f	for existenc	e of Riem	ann ir	ntegra	als Chapter - 7 :	
		7.15 to 7.2	6							

	UNIT-IV : Infinite Series and infinite Products - Double sequences -
	Double series - Rearrangement theorem for double series - A sufficient
	condition for equality of iterated series - Multiplication of series -
	Cesarosummability - Infinite products.
	Chapter - 8 Sec, 8.20, 8.21 to 8.26
	Power series - Multiplication of power series - The Taylor's series
	generated by a function - Bernstein's theorem - Abel's limit theorem -
	Tauber's theorem
	Chapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23
	UNIT-V: Sequences of Functions - Pointwise convergence of
	sequences of functions - Examples of sequences of real - valued
	functions - Uniform convergence and continuity - Cauchy condition for
	uniform convergence - Uniform convergence of infinite series of
	functions - Riemann - Stieltjes integration - Non-uniform Convergence
	and Term-by-term Integration - Uniform convergence and
	differentiation- Sufficient condition for uniform convergence of a
	series - Mean convergence.
	Chapter -9 Sec 9.1 to 9.6, 9.8,9.9,9.10 ,9.11and 9,13
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /
Component (is a part	others to be solved
of internal	(To be discussed during the Tutorial hour)
component only,	
Not to be included in	
the External	
Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill
Recommended	Tom M.Apostol : Mathematical Analysis, 2nd Edition, Addison-
Text	Wesley Publishing Company Inc. New York, 1974.

Reference Books	1. Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
	2. Rudin, W. Principles of Mathematical Analysis, 3 rd Edition. McGraw
	Hill Company, New York, 1976.
	3. Malik, S.C. and Savita Arora. <i>Mathematical Anslysis</i> , Wiley Eastern
	Limited.New Delhi, 1991.
	4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya
	Prakashan, New Delhi, 1991.
	5. Gelbaum, B.R. and J. Olmsted, Counter Examples in Analysis,
	Holden day, San Francisco, 1964.
	6. A.L.Gupta and N.R.Gupta, Principles of Real Analysis, Pearson
	Education, (Indian print) 2003.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Students will be able to

CLO1: Analyze and evaluate functions of bounded variation and Rectifiable Curves.

CLO2: Describe the concept of Riemann-Stieltjes integral and its properties.

CLO3:Demonstrate the concept of step function, upper function, Lebesgue function and their integrals.

CLO4:Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.

CLO5: Formulate the concept and properties of inner products, norms and measurable functions.

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Title of the	Course	ORDINARY DIFFERENTIAL EQUATIONS											
Paper Num	ber	CORE III											
Category	Core	Year	Ι	Credits	4	Cou	rse	P23MTT13					
		Semester	Ι			Cod	le						
Instructiona	al	Lecture	Tut	orial	Lab Prac	tice	Tota	ıl					
Hours		5	1				6						
per week													
Pre-requisit	te	UG level (UG level Calculus and Differential Equations										
Objectives	of the	To devel	op strong	g backgrou	nd on fir	nding	solut	tions to linear					
Course		differential	equation	s with const	ant and va	riable	coeff	icients and also					
		with singu	lar points,	to study exi	stence and	uniqu	ieness	of the solutions					
		of first ord	er differe	ntial equatio	ns								
Course Out	line	UNIT-I: I	Linear eq	uations with	n constant (coeffi	cients						
		Second or	der home	geneous eq	uations-Init	tial v	alue p	problems-Linear					
		dependence	e and	independenc	e-Wronskia	an a	nd a	formula for					
		Wronskian	-Non-hon	nogeneous e	quation of c	order 1	two.						
		Chapter 2	: Sections	1 to 6									
		UNIT-II : Linear equations with constant coefficients											
		Homogeneous and non-homogeneous equation of order n –Initial value											
		problems- Annihilator method to solve non-homogeneous equation-											
		Algebra of	constant	coefficient o	perators.								
		Chapter 2	: Section	s 7 to 12.									
		UNIT-III	:Linear e	quation wit	h variable	coeffi	cients						
		Initial valu	e problem	s -Existence	e and uniqu	eness	theor	ems – Solutions					
		to solve	a non-ho	mogeneous	equation	– W	ronsk	ian and linear					
		dependence	e – reduc	tion of the	order of a	hom	nogene	eous equation –					
		homogeneo	ous equa	tion with	analytic o	coeffi	cients	-The Legendre					
		equation.											
		Chapter	: 3 Section	ns 1 to 8 (O	mit sectio	n 9)							
		UNIT-IV	Linear e	quation with	h regular si	ingula	ar poi	nts					
		Euler equa	tion – Sec	ond order e	quations wi	th reg	gular s	ingular points –					
		Exceptiona	l cases – I	Bessel Funct	tion.								
		Chapter 4	Section:	ons 1 to 4 an	d 6 to 8 (C	Omit s	section	ns 5 and 9)					
		UNIT-V	: Existen	ce and uni	queness of	f solı	utions	to first order					
		equations:	Equation	with variable	e separated	$-\mathbf{E}\mathbf{x}$	act eq	uation – method					
		of successi	ve approx	timations –	the Lipschi	tz coi	nditior	n – convergence					
		of the succ	essive app	proximations	and the ex	istenc	e theo	orem.					
		Chapter 5	: Section	s 1 to 6 (O	mit Section	ns 7 to	9)						

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /
Component (is a part	others to be solved
of internal	(To be discussed during the Tutorial hour)
component only,	
Not to be included in	
the External	
Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill
Recommended	E.A.Coddington, A introduction to ordinary differential equations (3rd
Text	Printing) Prentice-Hall of India Ltd., New Delhi, 1987.
Reference Books	1. Williams E. Boyce and Richard C. DI Prima, Elementary
	differential equations and boundary value problems, John Wiley and
	sons, New York, 1967.
	2. George F Simmons, Differential equations with applications and
	historical notes, Tata McGraw Hill, New Delhi, 1974.
	3. N.N. Lebedev, Special functions and their applications, Prentice
	Hall of India, New Delhi, 1965.
	4. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons,
	New York, 1971
	5. M.D.Raisinghania, Advanced Differential Equations, S.Chand&
	Company Ltd. New Delhi 2001
	6. B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary
	Differential Equations, Narosa Publishing House, New Delhi,
	2002.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Students will be able to

CLO1:Establish the qualitative behaviour of solutions of systems of differential equations **CLO2:**Recognize the physical phenomena modelled by differential equations and dynamical systems.

CLO3: Analyze solutions using appropriate methods and give examples.

CLO4:Formulate Green's function for boundary value problems.

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

CLO5:Understand and use various theoretical ideas and results that underlie themathematics in this course.

Title of the Course	ADVANCED ALGEBRA							
Paper Number	CORE IV			r				
Category Core	Year I	Credits	5	Cou	rse	P23MTT21		
	Semester II			Cod	e			
Instructional Hour	s Lecture	Tutorial	Lab Pract	tice	Tota	1		
per week	5	1			6			
Pre-requisite	Algebraic Struc	tures						
Objectives of th	e To study field	extension, roots	of polynom	nials,	Galoi	s Theory, finite		
Course	fields, division	rings, solvab	ility by 1	radica	ls an	nd to develop		
	computational sl	kill in abstract alg	gebra.					
Course Outline	UNIT-I : Extens	sion fields – Tran	scendence of	of e.				
	Chapter 5: Sect	tion 5.1 and 5.2						
	UNIT-II: Roo	ts or Polynomials	s More abo	out ro	ots			
	Chapter 5: Sect	tions 5.3 and 5.5						
	UNIT-III : Elen	nents of Galois th	eory.					
	Chapter 5 : Sec	tion 5.6						
	UNIT-IV : Fir	nite fields - We	dder burn's	theor	rem or	n finite division		
	rings.							
	Chapter 7: Sect	tions 7.1 and 7.	2 (Theorem	n 7.2.	1 only	7)		
	UNIT-V : Solva	ability by radical	ls - A theor	rem o	f Frob	enius - Integral		
	Quaternions and	the Four - Squar	e theorem.					
	Chapter 5: Se	ection 5.7 (omit	t Lemma	5.7.1	, Lem	nma 5.7.2 and		
	Theorem 5.7.1)							
	Chapter 7 : Sec	tions 7.3 and 7.4	4					
Extended	Questions relate	ed to the above	ve topics,	from	vario	ous competitive		
Professional	examinations U	PSC / TRB / NE	ET / UGC -	- CSI	R / G/	ATE / TNPSC /		
Component (is a par	t others to be solv	ed						
of interna	1 (To be discussed	l during the Tutor	rial hour)					
component only, No	t							
to be included in th	e							
External								
Examination								
question paper)								
Skills acquired from	n Knowledge, F	Problem Solving	g, Analyti	ical	ability	v, Professional		
this course	Competency, Pro	ofessional Comm	unication a	nd Tra	ansferi	rable Skill		
Recommended	I.N. Herstein.	Topics in Algebr	a (II Editio	on) W	iley E	Eastern Limited,		
Text	New Delhi, 19	975.						

Reference Books	1. M.Artin, <i>Algebra</i> , Prentice Hall of India, 1991.
	2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract
	Algebra (II Edition) Cambridge University Press, 1997. (Indian
	Edition)
	3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II
	Rings, Narosa Publishing House, New Delhi, 1999
	4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract
	Algebra, McGraw Hill (International Edition), New York. 1997.
	5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing
	Company, New Delhi.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.algebra.com

Students will be able to

CLO1: Prove theorems applying algebraic ways of thinking.

CLO2: Connect groups with graphs and understanding about Hamiltonian graphs.

CLO3: Compose clear and accurate proofs using the concepts of Galois Theory.

CLO4: Bring out insight into Abstract Algebra with focus on axiomatic theories.

CLO5: Demonstrate knowledge and understanding of fundamental concepts including extension fields, Algebraic extensions, Finite fields, Class equations and Sylow's theorem.

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Title of the	Course	REAL ANALYSIS II							
Paper Nun	nber	CORE V							
Category	Core	Year	Ι		Credits	5	Cou	rse	P23MTT22
		Semester	II				Cod	le	
Instruction	nal Hours	Lecture		Tuto	orial	Lab Pract	tice	Tota	al
per week		5		1				6	
Pre-requisi	ite	Elements of	of Rea	l Ana	lysis				
Objectives	of the	To introd	uce n	neasui	re on the i	real line, L	ebesg	gue m	neasurability and
Course		integrabilit multivarial	y, F ole ca	Fourie lculus	r Series	and Integ	grals,	in-d	lepth study in
Course Ou	tline	UNIT-I :	Meas	ure o	n the Rea	a l line - I	Lebesg	gue C	Outer Measure -
		Measurable	e sets	s - R	legularity -	- Measurab	ole Fu	unctio	ons - Borel and
		Lebesgue I	Measu	ırabili	ty				
		Chapter -	2 Sec	2.1 to	o 2.5 (de Ba	arra)			
		UNIT-II:	Integ	gratio	n of Funct	ions of a R	eal va	riabl	e - Integration of
		Non- negat	ive fu	unctio	ns - The Ge	eneral Integ	ral - F	Riema	nn and Lebesgue
		Integrals							
		Chapter -	3 Sec	: 3.1,3	.2 and 3.4	(de Barra)			
		UNIT-III	: Fo	urier	Series an	d Fourier	Integ	grals	- Introduction -
		Orthogona	l syst	em of	functions	- The theore	em or	n best	approximation -
		The Fourie	er ser	ries of	f a function	n relative to	o an	ortho	normal system -
		Properties	of Fo	ourier	Coefficien	ts - The R	iesz-F	Fische	er Thorem - The
		convergen	e and	d repr	resentation	problems in	n for	trigor	nometric series -
		The Riema	nn - l	Lebes	gue Lemma	a - The Diri	ichlet	Integ	rals - An integral
		representat	ion f	for th	e partial	sums of F	ourie	r seri	ies - Riemann's
		localization theorem- Sufficient conditions for convergence of a Fourier							ence of a Fourier
		series at a particular point -Cesarosummability of Fourier series							Fourier series-
		Consequen	ces o	of Fe	jes's theore	em - The	Weie	rstras	s approximation
		theorem							
		Chapter 1	1 : Se	ection	s 11.1 to 11	.15(Aposto	ol)		

	UNIT-IV : Multivariable Differential Calculus - Introduction - The
	Directional derivative - Directional derivative and continuity - The total
	derivative - The total derivative expressed in terms of partial derivatives
	- The matrix of linear function - The Jacobian matrix - The chain rule -
	Matrix form of chain rule - The mean - value theorem for differentiable
	functions - A sufficient condition for differentiability- A sufficient
	condition for equality of mixed partial derivatives - Taylor's theorem for
	functions of \mathbb{R}^n to \mathbb{R}^1
	Chapter 12 : Section 12.1 to 12.14 (Apostol)
	UNIT-V : Implicit Functions and Extremum Problems : Functions
	with non-zero Jacobian determinants - The inverse function theorem-
	The Implicit function theorem-Extrema of real valued functions of
	severable variables-Extremum problems with side conditions.
	Chapter 13 : Sections 13.1 to 13.7 (Apostol)
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /
Component (is a part	others to be solved
of internal	(To be discussed during the Tutorial hour)
component only, Not	
to be included in the	
External	
Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. G. de Barra, Measure Theory and Integration, Wiley Eastern Ltd.,
Text	New Delhi, 1981. (for Units I and II)
	2 Tom M Apostol · <i>Mathematical Analysis</i> 2 nd Edition Addison-
	Wesley Publishing Company Inc. New York, 1974. (for Units III. IV
	and V)

Reference Books	1. Burkill J.C. The Lebesgue Integral. Cambridge University Press.
	1951.
	2. Munroe M.E. <i>Measure and Integration</i> . Addison-Wesley, Mass.1971.
	3. Roydon H.L. <i>Real Analysis</i> , Macmillan Pub. Company, New York,
	4. Rudin, W. Principles of Mathematical Analysis, McGraw Hill
	Company, New York, 1979.
	5. Malik S.C. and Savita Arora. <i>Mathematical Analysis</i> , Wiley Eastern
	Limited. New Delhi, 1991.
	6. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya
	Prakashan, New Delhi, 1991
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org

Students will be able to

CLO1: Understand and describe the basic concepts of Fourier series and Fourier integrals with respect to orthogonal system.

CLO2: Analyze the representation and convergence problems of Fourier series.

CLO3: Analyze and evaluate the difference between transforms of various functions.

CLO4: Formulate and evaluate complex contour integrals directly and by the fundamental theorem.

CLO5: Apply the Cauchy integral theorem in its various versions to compute contour integration.

				PSOs					
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Title of the	e Course	se PARTIAL DIFFERENTIAL EQUATIONS								
Paper Nur	nber	CORE VI							_	
Category	Core	Year	Ι		Credits	4	Cou	rse	P23MTT23	
		Semester	Ι				Cod	le		
Instruction	nal Hours	Lecture		Tuto	rial	Lab Pract	tice	Total		
per week		5		1				6		
Pre-requis	ite	UG level p	oartia	l diffe	rential equa	tions		•		
Objectives	of the	To classif	y the	secon	d order par	tial differen	ntial e	equation	ons and to study	
Course		Cauchy pr	oblen	n, me	thod of sep	paration of	varia	ables,	boundary value	
		problems.								
Course Ou	ıtline	UNIT-I :N	Aatho	emati	cal Models	and Class	sifica	tion o	of second order	
		equation :	Class	sical e	quations-V	ibrating stri	ng –	Vibrat	ting membrane –	
		waves in e	lastic	medi	um – Cond	uction of he	eat in	solids	s – Gravitational	
		potential -	- Sec	ond o	order equat	ions in tw	o ind	lepend	lent variables –	
		canonical	form	s – e	equations v	with consta	ant c	oeffic	ients – general	
		solution								
		Chapter 2	: Sec	tions	2.1 to 2.6					
		Chapter 3	: Sec	tions	3.1 to 3.4 (Omit 3.5)				
		UNIT-II	:Cau	chy F	roblem :	The Ca	auchy	prob	olem – Cauchy-	
		Kowalews	ky tl	heorer	n – Hom	ogeneous	wave	e equ	ation – Initial	
		Boundary	value	e prot	olem- Non-	homogeneo	ous b	ounda	ry conditions -	
		Finite strin	ng wi	ith fix	ed ends –	Non-home	ogene	ous v	vave equation –	
		Riemann 1	metho	od –	Goursat pr	roblem – s	pheri	cal w	vave equation –	
		cylindrical wave equation.								
		Chapter 4 : Sections 4.1 to 4.11								
		UNIT-III	:Met	hod o	f separatio	n of variab	oles: S	Separa	tion of variable-	
		Vibrating	string	g prob	lem – Exi	stence and	uniq	uenes	s of solution of	
		vibrating s	string	prob	lem- Heat	conduction	prot	olem -	- Existence and	
		uniqueness	of so	olution	n of heat co	nduction pr	robler	n – La	aplace and beam	
		equations								
		Chapter 6 : Sections 6.1 to 6.6 (Omit section 6.7)								
		UNIT-IV : Boundary Value Problems : Boundary value problem							value problems –	
		Maximum and minimum principles - Uniqueness and continu						and continuity		
		theorem – Dirichlet Problem for a circle, a circular annulus, a rea							ulus, a rectangle	
		– Dirichlet	prob	lem in	volving Po	isson equat	ion –	Neum	nann problem for	
		a circle and	l a rec	ctangle	е.					
		Chapter 8	: Sec	tions	8.1 to 8.9					

	UNIT-V : Green's Function: The Delta function – Green's function –
	Method of Green's function – Dirichlet Problem for the Laplace and
	Helmholtz operators – Method of images and eigen functions – Higher
	dimensional problem – Neumann Problem.
	Chapter 10 : Section 10.1 to 10.9
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /
Component (is a part	others to be solved
of internal	(To be discussed during the Tutorial hour)
component only, Not	
to be included in the	
External	
Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. TynMyint-U and Lokenath Debnath, Partial Differential Equations
Text	for Scientists and Engineers (Third Edition), North Hollan, New
	York, 1987.
Reference Books	1. M.M.Smirnov, Second Order partial Differential Equations,
	Leningrad, 1964.
	2. I.N.Sneddon, Elements of Partial Differential Equations, McGraw
	A Depresentation to Partial Differential Equations and
	Boundary Value Problems McGraw Hill New York 1968
	4. M.D.Raisinghania. Advanced Differential Equations. S.Chand&
	Company Ltd., New Delhi, 2001.
	5. S, Sankar Rao, <i>Partial Differential Equations</i> , 2 nd Edition, Prentice
	Hall of India, New Delhi. 2004
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Students will be able to

CLO1:To understand and classify second order equations and find general solutions

CLO2: To analyse and solve wave equations in different polar coordinates

CLO3:To solve Vibrating string problem, Heat conduction problem, to identify and solve Laplace and beam equations

CLO4:To apply maximum and minimum principle's and solve Dirichlet, Neumann problems for various boundary conditions

•									
				PSOs					
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

CLO5:To apply Green's function and solve Dirichlet, Laplace problems, to apply Helmholtz operation and to solve Higher dimensional problem

ELECTIVE COURSES

SEMESTER -I -ELECTIVE -I-GROUP A

Title of the	e Course	1. NUMBER THEORY AND CRYPTOGRAPHY								
Paper Nur	nber	ELECTIV	ΕI							
Category	ELECTIVE	Year	Ι	Credits	3	Cou	rse	P23MTE1A		
	COURSE	Semester	Ι			Cod	e			
Instruction	nal Hours	Lecture	cture Tutorial Lab Practice Total							
per week		4	4 1 5							
Pre-requis	site	UG level Number Theory								
Objectives	s of the	To provide	e an int	roduction t	o analytic	numb	er the	eory and recent		
Course		topics of Cryptography with applications.								
Course Ou	ıtline	UNIT I :	Introduc	ction – Cor	njectures, T	heore	ms, a	nd Proofs-Well		
		Ordering a	ind Ind	uction- Sig	ma Notatio	on an	d Pro	oduct Notation-		
		Binomial	Coeffici	ents- Grea	test Intege	r Fui	nction	ns- Divisibility,		
		Greatest Co	ommon	Divisor, E	uclid 's algo	orithm	ı; GC	D via Euclid 's		
		algorithm-	Least C	ommon Mu	ltiple- Repr	esent	ation	of integers.		
		Chapter 1	: Section	ons1.1-1.6	and Chapt	er 2:	Sect	tions 2.2-2.4 of		
		Text Book 1.								
		UNIT II: Introduction –Primes, Prime Counting Function, Prime								
		Number Tl	heorem;	Test of P	rimality by	Trial	l Divi	ision –Sieve of		
		Eratosthene	es, Can	onical Fac	torization,	Funda	ament	al Theorem of		
		Arithmetic.								
		Chapter 3: Sections 3.1-3.3 of Text Book 1.								
		UNIT III	UNIT III : Congruences and Equivalence Relations-Linear							
		Congruence	es -Lin	ear Dioph	antine Equ	ation	s an	d the Chinese		
		Remainder	Theo	rem- Poly	nomial C	longru	iences	s – Modular		
		Arithmetic: Fermat's Theorem –Wilson's Theorem and Fermat								
		Numbers.								
		Chapter 4:	Section	ns 4.2-4.7 c	of Text Boo	k 1.				
		UNIT IV: Introduction-Sigma Function. Tau Functions. Dirichlet								
		Product -I	Dirichlet	Inverse,	Moebius Fu	inctio	n, Eı	uler's Function,		
	Euler's Theorem.									
		Chapter 5:	Chapter 5: Sections 5.1 – 5.3 of Text Book 1.							
	UNIT V: Cryptography:					– S	ome	simple crypto		
		systems –Enciphering Matrices–The idea of Public key								
		Cryptography– RSA.								
		Chapter II	I: Sect	ions 1-2 ar	nd Chapter	IV:	Sectio	ons 1-2 of Text		
		Book 2.								

Extended Professional	Questions related to the above topics from various compatitive
Extended Fiblessional	Questions related to the above topics, non various competitive
Component (is a part of	examinations UPSC / IRB / NET / UGC – CSIK / GATE / INPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill
Recommended Text	1. Neville Robbins; Beginning Number Theory, Second Edition,
	Narosa, 2006.
	2. Neal Koblitz: A Course in Number Theory and Cryptography,
	Second edition, Springer-Verlag Newyork-1994.
Reference Books	1. Tom. M. Apostol; Introduction to analytic Number theory,
	Narosa Publishing House, 1998.
	2. Ivan Nivan, H. S. Zuckerman and H. L. Montgomery; An
	introduction to the theory of Number,
	5th Ed paperback-International Edition, 1991.
Website and	https://www.encyclopedia.com/science/encyclopedias-almanacs-
e-Learning Source	transcripts-and-maps/applications-number-theory-cryptography,
	https://mathstats.uncg.edu/number-theory/
	https://en.wikipedia.org/wiki/Number_theory
	https://en.wikibooks.org/wiki/Cryptography

Students will be able to

CLO 1: understand the problems in elementary number theory

CLO 2: apply elementary number theory to Cryptography

CLO 3: develop a deep understanding of theoretical basis of number theory and

cryptography.

CLO 4: identify how number theory is related and applied in Cryptography

CLO 5: develops the knowledge of encryption and decryption and their application in Managing the security of data.

	POs							PSOs		
1	2	3	4	5	6	1	2	3		

CL01	3	3	3	2	1	2	3	3	2
CLO2	2	3	3	3	2	2	2	3	2
CLO3	3	2	2	2	1	1	3	2	1
CLO4	2	3	1	2	2	3	2	2	2
CLO5	3	1	2	2	2	1	3	2	1

Title of the	e Course	2. GRAPH	THEO	RY AND	APPLICAT	TION	S			
Paper Nur	nber	ELECTIV	EI							
Category	ELECTIVE	Year	Ι	Credits	3	Cou	rse	P23MTE1A		
	COURSE	Semester	Ι			Cod	e			
Instruction	nal Hours	Lecture	Tuto	orial	Lab Prace	tice	Tota	ıl		
per week		4	1				5			
Pre-requis	site	UG level Graph Theory								
Objectives	s of the	To study the graph theoretical concepts and algorithms that help to								
Course		model real life situations.								
Course Ou	ıtline	UNIT I: 7	Frees, (Cut Edges	and Bonds	s, Cu	t Ver	tices, Cayley's		
		Formula –	Applica	tions: The	Connector	Prob	lem -	- Connectivity,		
		Blocks – A	Applicat	tions: Cons	struction of	Relia	able (Communication		
		Networks.								
		Chapter 2	: Sectio	ons 2.1-2.5	and Chapte	er 3: \$	Sectio	ns 3.1-3.3		
		UNIT II:	Euler '	Tours, Har	niltonian C	ycles	-Ap	plications: The		
		Chinese Po	stman P	roblem, Th	e Travelling	g Sale	sman	Problem.		
		Chapter 4: Sections 4.1-4.4.								
		UNIT III:	Match	ning's, Mat	tching's an	d Co	vering	gs in Bipartite		
		Graphs, F	Perfect	Matching	– Appli	cation	ns: 7	The Personnel		
		Assignmen	t Proble	m, The Opt	imal Assign	nment	Prob	lem.		
		Chapter 5:	Section	ns 5.1-5.5	-					
		UNIT IV	: Chro	omatic Nu	umber, Br	ook's	The	eorem, Hajos'		
		Conjecture	, Chrom	atic Polyno	mials, Girth	n and	Chron	natic Number –		
		Application	ns: A Sto	orage Probl	em.					
		Chapter 8:	Section	ns 8.1-8.6.						
		UNIT V:	Directe	d Graphs,	Directed	Paths,	Dire	cted Cycles –		
		Application	ns: A Jo	ob Sequenc	ing Proble	m, Do	esigni	ng as Efficient		
		Computer I	Drum, N	laking a Ro	ad System	One-	Way.			
		Chapter 10): Section	ons 10.1-10	.6.					
Extended Componen internal	Professional t (is a part of component	Questions examination / others to b	related ns UPS be solve	to the abo C / TRB / M d	ve topics, NET / UGC	from – CS	various competitive SIR / GATE / TNPSC			
only, Not	to be included	(To be disc	ussed di	uring the Tu	utorial hour)				
in the	External									
naper)	an question									
paper)										

SEMESTER -I -ELECTIVE -I-GROUP A

Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional										
course	Competency, Professional Communication and Transferrable Skill										
Recommended Text	J.A Bondy and U.S.R Murty, Graph Theory with Applications,										
	North Holland, 1976.										
Reference Books	1. John Clark and D. Allan Holton; Graph theory World Scientific										
	Publishing Co. Pvt.Ltd, 1991.										
	2. Narsingh Deo; Graph Theory with Applications to Engineering										
	and Computer Science, Prentice Hall, 1974.										
Website and	https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTW										
e-Learning Source	<u>A.pdf,</u>										
	http://ignited.in/I/a/252519,										
	https://www.mygreatlearning.com/blog/application-of-graph										
	theory/https://in.coursera.org/learn/graphs,										
	https://neo4j.com/blog/top-13-resources-graph-theory-algorithms/										

Students will be able to

CLO 1:study the properties of Trees, Connectivity and Blocks with its applications.

CLO 2: discuss Euler tour, Hamiltonian cycles and its suitable applications.

CLO 3:understand the concepts of Matching's, Coverings and Perfect Matching's.

CLO 4:apply domain knowledge in Chromatic number, Brook's Theorem, Hajos' Conjecture

and Chromatic polynomials.

CLO 5:define Directed graphs, Directed paths and Directed cycles and apply results to Practical problems.

			P	Os				PSOs			
	1	2	3	4	5	6	1	2	3		
CLO1	3	1	2	2	1	2	2	1	1		
CLO2	3	2	3	2	1	2	2	1	2		
CLO3	3	1	2	1	1	2	1	2	2		
CLO4	2	3	3	2	2	2	2	3	3		
CLO5	3	3	3	2	2	1	3	2	2		

SEMESTER -I -ELECTIVE -I-GROUP A

Title of the	e Course	3. FORMA	L LAN	IGUAGES	AND AUT	ΓΟΜΑ	ATA 7	THEORY			
Paper Nu	mber	ELECTIV	ΕI								
Category	ELECTIVE	Year	Ι	Credits	3	Cou	irse	P23MTE1C			
	COURSE	Semester	Ι			Cod	le				
Instructio	nal Hours	Lecture	Tuto	orial	Lab Prac	tice	tice Total				
per week		4 1 5									
Pre-requis	site	UG level Discrete Mathematics, e.g., graphs, trees, logic, and proof techniques.									
Objectives	s of the	To underst	and the	e notion of	f effective	comp	outabil	lity by studying			
Course		Finite Auto	mata, H	Regular Exp	pressions, R	Regula	r Lan	guages and Free			
		Grammars.									
Course Ou	ıtline	UNIT I: V	Vhy St	udy Autom	hata Theory	y? -In	ntrodu	ction to Formal			
		Proof- Addi	tional l	Forms of Pr	oof-Inducti	ive Pro	oofs.				
		Chapter 1: Sections 1.1 – 1.4									
		UNIT II:	An Inf	formal Pict	ure of Fin	ite A	utoma	ata-Deterministic			
		Finite A	Automa	ta-Non-Det	erministic	Fi	nite	Automata-An			
		Application	: Text S	Search.							
		Chapter 2:	Sectio	ns 2.1 – 2.4							
		UNIT III:	Regu	ılar Expres	sions-Finit	e Au	tomat	a and Regular			
		Expressions	-Appli	cation of R	egular Exp	oressio	ns-Al	gebraic Laws of			
		Regular Exp	pression	ns.							
		Chapter 3:	Sectio	ns 3.1 – 3.4							
		UNIT IV: I	Proving	g Languages	are Not R	egular	-Clos	ure Properties of			
		Regular La	anguag	es-Decision	Propertie	s of	Regu	ılar Languages-			
		Equivalence	e and M	linimization	n of Autom	ata.					
		Chapter 4: Sections 4.1 – 4.4									
		UNIT V: Context-Free Grammars-Parse Trees-Application of									
		Context-Fre	e Gran	nmar-Ambig	guity in Gra	amma	rs and	Languages.			
		Chapter 5:	Sectio	ns 5.1 – 5.4							

Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations NET / UGC - CSIR / GATE / TNPSC / others to be
internal component	solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill
Recommended Text	J. E. Hopcroft, R. Motwani and J.D. Ullman; Introduction to
	Automata Theory, Languages, and Computation. Second Edition,
	Pearson Edition, 2001.
Reference Books	1. P.K. Srimani and S.F.B. Nasir; A text book on Automata theory,
	Cambridge University press, 2007.
	2. J.P. Tremblay and R. Manohar; Discrete Mathematical Structures
	with Applications to Computer Science, McGraw Hill Education
	(India) Pvt Ltd, 2017.
Website and	https://en.wikipedia.org/wiki/Automata_theory,
e-Learning Source	https://en.wikiversity.org/wiki/Automata_theory,

Students will be able to

- CLO 1: understand the basic properties of formal languages and grammars.
- CLO 2: make grammars to produce strings from a specific language..
- CLO 3: design sample Automata
- CLO 4: minimize Finite Automata and grammar of context-free languages.
- CLO 5: differentiate regular, context-free and recursively enumerate languages.

			P	Os			PSOs			
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	1	1	2	1	2	2	1	
CLO2	2	3	3	2	2	1	2	3	1	
CLO3	1	3	3	3	2	2	2	3	2	
CLO4	1	3	3	3	2	2	3	2	2	
CLO5	3	3	3	2	2	1	1	3	1	

SEMESTER -I -ELECTIVE -I-GROUP A

Title of	the Course	4.PROGR	AMM	ING IN C+	+ AND NU	MERICA	L METHODS			
Paper	·Number	ELECTIVE	EI							
Category	ELECTIVE	Year	Ι	Credits	3	Course	P23MTE1A			
	COURSE	Semester	Ι			Code				
Instruct	ional Hours	Lecture	T	utorial	Lab Prac	tice	Total			
per	r week	4			1		5			
Pre-requis	site	Basics of Di	fferent	iation and I	ntegration					
Objectives	s of the	To develop	the	skills of	solving a	algebraic,	transcendental,			
Course		differential and integral equations numerically and C++ Programme.								
Course Ou	ıtline	UNIT I: M	ethod	of False Po	osition - Bi	section Me	thod - Iterative			
		Method -	Newto	n-Raphson	Method -	Graeffe	Root Squaring			
		Method - Pro	ogramı	me for Bise	ction Metho	od.				
		Chapter 2:	Section	ns 2.2, 2.3,	2.4, 2.5, 2.8	and 2.11.	1			
		UNIT II: C	Gauss 1	Elimination	Method -	Jordan M	lethod – Jacobi			
		Iteration Me	ethod -	- Gauss-Se	idel Iterativ	ve Method	- Eigen Value			
		Problem – P	Problem – Programme for Gauss Elimination Method.							
		Chapter 3: Sections 3.3, 3.4, 3.7, 3.8, 3.13 and 3.15.1.								
		UNIT III: (Curve 1	Fitting -Fitt	ing a Straig	ght Line by	the Method of			
		Group Avera	ages –	Least Squa	re Curve Fi	itting Meth	od – Method of			
		Moments –	Weigh	ted Least S	quares Met	hod – Prog	gramme to Fit a			
		Straight Line	e Using	g Group Av	erage Meth	od.				
		Chapter 4:	Section	ns 4.1, 4.2,	4.3, 4.4, 4.5	and 4.6.1				
		UNIT IV: I	Finite 1	Differences	– E, μ and	d D Opera	tors – Gregory-			
		Newton Fo	orward	Interpola	tion Form	nula - C	Bregory-Newton			
		Backward I	nterpo	lation Forn	nula – Gau	uss Forwa	d Interpolation			
		Formula – G	Bauss E	Backward Ir	terpolation	Formula –	Programme for			
		Interpolating	g Using	g Gregory-N	Newton Forv	ward Interp	olation.			
		Chapter 5: Sections 5.1, 5.2, 5.7, 5.8, 5.9, 5.10 and 5.23.1								
		UNIT V: N	umeric	al Differen	tiation – Tr	apezoidal -	- Simpson's 1/3			
		Rule - Simp	oson's	3/8 Rule -	Romberg	Formula -	Programme to			
		Find Derivat	tive at	Initial Point	by Newtor	n Forward I	Formula.			
		Chapter 6:	Section	ns 6.1, 6.6,	6.7, 6.8, 6.1	1 and 6.16	.1			

Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill.
Recommended Text	1.Nita H. Shah, Numerical Methods With C++ Programming,
	PHI Learning Private Limited, 2009.
Reference Books	1. C.F.Gerald and P.O.Wheatly; Applied Numerical Analysis,
	Addison Wesley, Fifth Edition, 1998.
	2. V. Rajaraman, Computer Oriented Numerical Methods, PHI, 3rd
	Edition, 2006.
	3. E.V.Krishnamurthy and S.K. Sen, Computer Based Numerical
	Algorithms, Affiliated East-west Press Pvt Ltd, 1st Ediiton, 2009.
	4. M.K.Jain, S.R.K.Iyengar and R.K.Jain; Numerical Methods for
	Scientific and Engineering Computation, New Age International
	Publishers, Fourth Edition, 2013.
Website and	https://www.codesansar.com/numerical-methods/,
e-Learning Source	https://www.phindia.com/Books/BookDetail/9788120335967/nume
	rical-methods-with-cprogramming-shah,
	https://www.udemy.com/course/learn-numerical-methods-using-c/

Students will be able to

CLO 1: understandthe iterative methods for finding the roots of transcendental and algebraic equations with C++ Programme.

CLO 2: solve a system of linear algebraic equations and study Convergence of iterative methods.

CLO 3: fit a Curve for given set of data through C++ Programme.

CLO 4: approximate the polynomial by interpolation method via C++ Programme.

CLO 5: analyse Numerical Differentiation and Integration using Programming in C++.

		POs							PSOs		
	1	2	3	4	5	6	1	2	3		

CLO1	3	2	3	2	1	2	3	2	2
CLO2	3	2	3	2	1	2	3	2	2
CLO3	3	2	3	2	1	2	3	2	2
CLO4	3	2	3	2	1	2	3	2	2
CLO5	3	2	3	2	1	2	3	2	2

SEMESTER -II -ELECTIVE -III-GROUP B

Title of	the Course	1. LIE GROUPS ANDLIE ALGEBRAS								
Paper	Number	ELECTIVE III								
Category	ELECTIVE	Year	Ι	Credits	3	Cour	rse	P23MTE2A		
	COURSE	Semester	II			Cod	le			
Instruct	ional Hours	Lecture	Т	utorial	Lab Prac	tice		Total		
per	week	3		1				4		
Pre-requis	ite	Basics set t	heory a	nd Groups						
Objectives	of the	To introduc	e the co	oncept of I	Lie Algebra	s and Li	ie Gi	roups and to		
Course		study their	properti	es						
Course Ou	ıtline	UNIT I:Lie	e groups	s, Subgroup	s, and coset	ts, Actio	on of	f Lie groups on		
		manifolds and representations. Orbits and homogeneous spaces								
		Left right and adjoint action Classical groups								
		Chanter 2: 2.1.2.5								
		Chapter 2. 2.1-2.3								
		UNIT II: :	Expone	ential map,	The commu	tator, A	Adjoi	nt action and		
		Jacobi identity.								
		Chapter 3:	3.1-3.3							
		UNIT III:	Subalge	bras, ideals	s, and centre	e, Lie al	lgebr	a of vector		
		fields, Stabilizers and the center.								
		Chapter 3: 3.4-3.6								
		UNIT IV:Campbell-Hausdorff formula, Fundamental theorems of								
		Lie theory, Complex and real forms, Example: $so(3, \mathbb{R})$, $su(2)$, and								
		$sl(2,\mathbb{C})$								
		Chapter 3:	3.7-3.1	0						

	UNIT V: Basic definitions, Operations on representations,							
	Irreducible representations, Intertwining operators and Schur							
	lemma.							
	Chapter 4 : 4.1-4.4							
Extended Professional	Questions related to the above topics, from various competitive							
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC							
internal component	/ others to be solved							
only, Not to be included	(To be discussed during the Tutorial hour)							
in the External								
Examination question								
paper)								
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional							
course	Competency, Professional Communication and Transferrable Skill.							
Recommended Text	1. 1. Alexander Kirillov J.R. Introduction to Lie Algebras and Lie							
	Groups SUNY ATSTONY BROOK, NY 11794							
Reference Books	1Alexander Kirillov J.R Lie Groups , Lie Algebras, and							
	Representations.							
	2Alexander Kirillov J.R Introduction to Lie Algebras and							
	representation theory.							
	3Alexander Kirillov J.R Introduction to Lie Algebras							
Website and	URL:http//www.math.sunysb.edu/"kirillov/liegroup							
e-Learning Source								

Students will be able to

CLO 1: understandthe definition of Lie Groups and Lie Algebras.

CLO 2: studied exponential map, The commutator, Adjoint action and Jacobi identity.

CLO 3: gained the Subalgebras, ideals, and centre, Lie algebra of vector fields, Stabilizers and the center.

CLO 4: Campbell-Hausdorff formula, Fundamental theorems of Lie theory, Complex and real forms, Example: $so(3, \mathbb{R})$, su(2), and $sl(2, \mathbb{C})$

CLO 5:Operations on representations, Irreducible representations, Intertwining operators and Schur lemma.

	POs	PSOs	

	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	2	1	2	3	2	2
CLO2	3	2	3	2	1	2	3	2	2
CLO3	3	2	3	2	1	2	3	2	2
CLO4	3	2	3	2	1	2	3	2	2
CLO5	3	2	3	2	1	2	3	2	2

SEMESTER -II -ELECTIVE -III-GROUP B

Title of	the Course 2.MATHEMATICAL PROGRAMMING									
Paper	Number	ELECTIVE III								
Category	ELECTIVE	Year	Ι	Credits	3	Cou	rse	P23MTE2B		
	COURSE	Semester	II			Co	de			
Instructi	ional Hours	Lecture	T	utorial	Lab Prac	tice		Total		
per	: week	3		1				4		
Pre-requis	ite	UG level Op	eration	ns Research						
Objectives	of the	To understar	nd the	methods of	optimizatio	n tech	nique	s, the theory of		
Course		optimization	techni	ques and fa	miliar in so	olving	techr	niques,		
		analysing the results and propose recommendations to the								
		decision mal	king pr	ocess.						
Course Ou	ıtline	UNIT I:Inte	eger Li	inear Prog	ramming					
		Intro	duction	n - Illustrat	tive applica	tion in	ntegei	r programming		
		solution a	lgorith	ms, Branc	h and Bou	und A	lgorit	thm –zero-one		
		implicit enu	merati	on algorithi	m- Cutting j	plane a	algori	thm		
		Chapter 9: 9	9.1, 9.2	2.1, 9.2.3						
		UNIT II: De	etermi	nistic Dyna	amic Progr	ammi	ng			
		Intro	duction	n- Recursiv	ve nature	of c	ompu	tation in DP-		
		Forward and Backward recursion- Selected DP a						P applications		
		cargo- Loading model Work force size model- Equ						- Equipment –		
		replacement	model	- Inventory	models					
		Chapter10:	10.1 to	10.3						

	UNIT III: Decision Analysis and Games:
	Decision environment- Decision making under certainty
	(Analytical Hierarchy approach). Decision making under risk-
	Expected value criterion- Variations of the expected value criterion
	- Decision under uncertainty Game theory. Optimal solution of
	Two – Person zero-Sum games- Solution of mixed strategy games
	Chapter 14 : 14.1 to 14.4
	UNIT IV:Simulation Modeling :
	What is simulation? Monte Carlo Simulation- Types of
	simulation- Elements of Discrete Event simulation- Generic
	definition of events- Sampling from probability distributions.
	Methods for gathering statistical observations – Sub Interval
	method- Republican method- Regenerate (Cycle Method)-
	Simulation Languages
	Chapter 18 : 18.1 to 18.7
	UNIT V: Nonlinear Programming Algorithm
	Unconstrained nonlinear Programming algorithm- Direct
	search method- Gradient method Constrained algorithms:
	Separable programming- Quadratic programming- Geometric
	programming- Stochastic programming- Linear Combination
	Method- SUMT algorithm
	Chapter 21: 21.1, 21.2
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill.
Recommended Text	1.Hamdy A.Taha, Operation Research an Introduction, 6 th edition,
	University of Arkansas Fayetteville

Reference Books	1.F.S. Hillier and G. J. Liberman Introduction to operation							
	Research 4 th Edition, Mc Gno Hill Book Compnany, New York,							
	1989							
	2.B.E.Gillett, Operation Research- A computer oriented							
	algorithmic Approach, TMH Edition NewDelhi, 1976							
Website and	www.pearsonglobaleditions.com							
e-Learning Source								

Students will be able to

CLO 1: Integer Linear Programming

CLO 2: Deterministic dynamic Programming

CLO 3: Decision analysis and games

CLO 4: Simulation Modeling

CLO 5:Nonlinear Programming algorithm

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	2	1	2	3	2	2
CLO2	3	2	3	2	1	2	3	2	2
CLO3	3	2	3	2	1	2	3	2	2
CLO4	3	2	3	2	1	2	3	2	2
CLO5	3	2	3	2	1	2	3	2	2

SEMESTER -II -ELECTIVE -III-GROUP B

Title of	the Course	3. FUZZY SETS AND THEIR APPLICATIONS								
Paper	Number	ELECTIVE								
Category	ELECTIVE	Year	Ι	Credits	3	Course	P23MTE2C			
	COURSE	Semester	II			Code				
Instruct	ional Hours				Lab Prac	ctice	Total			
per	r week	3		1			4			
Pre-requis	ite	UG level se	ts and	functions						
Objectives	of the	To introduce	e the c	concept of	fuzzy theor	y and stud	ly its application			
Course		in real probl	ems. 7	Fo study the	e uncertaint	ty environ	ment through the			
		fuzzy sets th	nat inc	orporates.	To understa	and the fur	zzy relations and			
		fuzzy arithm	etic							
Course Ou	ıtline	UNIT-I: F	rom (Classical Se	ets To Fuzz	y Sets				
		From Class	sical S	Sets To Fi	uzzy Sets:	A Grand	paradigm shift,			
		Introduction - Fuzzy Sets Verses Crisp Sets : An Overview -								
		Fuzzy Sets : Basic types – Fuzzy sets : Basic Concepts –								
		Characteristics and Significance of the paradigm shift –								
		Additional Properties of $\alpha = cuts = Representations of Fuzzy sets$								
		First Decomposition theorem - Second Decomposition theorem								
		Third Decomposition theorem- Extension Principle for fuzzy sets								
		Chanter 1 Sections 1 3 1 4 Chanter • 2 Sections 2 1 and 2								
			cetton	15 1.5, 1.4,		beenons	2.1 and 2.			
		UNIT-II- Or	neratio	ons on Fuz	zv Sets					
		Operations	on		ets. Types	of opera	tions – Fuzzy			
		complements First Characterization Theorem of Fuzzy								
		Complement	5 — 1 ta	Second C	borootorizo	tion The	orem of Euzzy			
		Complements - Second Characterization Theorem of Fuzzy								
		Complement	ιs -	Fuzzy Int	ersections:	t-inorms –	Some classes of			
		Fuzzy Intersections (t–Norms) - Fuzzy Unions: t- Conorms -								
		Some classes of Fuzzy Unions (t- Conorms) - Combinations of								
		Operations -	- Agg	regation Op	perations.					
		Chapter 3 Sections 3.1, 3.2, 3.3, 3.4, 3.5								

	UNIT-III: Fuzzy Arithmetic:
	Fuzzy Arithmetic introduction -Fuzzy Numbers – Membership
	functions of Fuzzy numbers theorem - Linguistic variables -
	Arithmetic operations on intervals –Arithmetic operations on Fuzzy
	numbers – Lattice of Fuzzy numbers – Fuzzy Equations – Equation
	A + X = B and Equation $A * X = B$.
	Chapter 4 Sections 4.1, 4.2, 4.3, 4.4
	UNIT-IV: Fuzzy Relations
	Fuzzy Relations introduction Crisp and Fuzzy Relations –
	Projections and Cylindric Extensions – Binary Fuzzy Relations –
	Binary Relations on a Single Set – Fuzzy Equivalence Relations –
	Fuzzy Compatibility Relations –Fuzzy Ordering Relations –
	Fuzzy Morphisms – SUP-i Compositions of Fuzzy Relations –
	INF-omega Compositions of Fuzzy Relations.
	Chapter 5 Sections 5.3, 5.4, 5.5, 5.6, 5.7, 5.8
	UNIT-V: Fuzzy Decision Making and Applications
	Fuzzy Decision Making introduction -General Discussion -
	Individual decision making – Multiperson Making – Multicriteria
	Decision Making – Multistage Decision Making – Fuzzy Ranking
	methods – Fuzzy Linear programming. Itiperson Decision Making-
	Ranking methods – Fuzzy Linear programming
	Applications: Medicine- Economics-Fuzzy systems and Genetic
	applications- Fuzzy Regression- Interpersonal communication-
	Chapter 15 Sections 15 2 15 3 15 6 15 7
	Chapter 15 Sections 15.2,15.5, 15.0, 15.7 Chapter 17Sections 17.1 to17.7
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC
internal component only,	/ others to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill.
Recommended Text	1George J. Klir and Bo Yuan , "Fuzzy sets and Fuzzy Logic Theory and Applications", Prentice Hall of India, (2005).

Reference Books	 1.A.K. Bhargava: Fuzzy Set Theory, Fuzzy Logic and their Applications, published by S. Chand Pvt limited, 2013 2.S. Rajasekaran& Y.A. VijiaylakshmiPai, Neural Networks, Fuzzy logic and genetic algorithms, Prentice Hall of India 3. H.J. Zimmermann, "Fuzzy Set Theory and its Applications", Allied Publishers Limited (1991). 4. M. Ganesh, "Introduction to Fuzzy sets and Fuzzy logic", Prentice Hall of India, New Delhi (2006).
Website and	-http://mathforum.org. http://ocw.mit.edu/ocwweb/Mathematics.
e-Learning Source	http://www.opensource.org, http://www.Fuzzylogic .net

Students will be able to

- CLO 1: Crisp sets and fuzzy sets
- CLO 2: Operation on Fuzzy sets
- CLO 3: Fuzzy relation
- CLO 4: Decision making in Fuzzy environment

CLO 5: Applications

		POs							PSOs		
	1	2	3	4	5	6	1	2	3		
CLO1	3	2	3	2	1	2	3	2	2		
CLO2	3	2	3	2	1	2	3	2	2		
CLO3	3	2	3	2	1	2	3	2	2		
CLO4	3	2	3	2	1	2	3	2	2		
CLO5	3	2	3	2	1	2	3	2	2		

SEMESTER -II -ELECTIVE -III-GROUP B

Title of	the Course	4.DISCRETE MATHEMATICS								
Paner	Number	ELECTIVE III								
Category	ELECTIVE	Year	Ι	Credits	3	Cours	se P23MTE2D			
87	COURSE	Semester	II		-	Cod	e			
Instructi	ional Hours	Lecture	T	utorial	Lab Prac	tice	Total			
per	week	3		1			4			
Pre-requis	ite	UG level set	ts and	functions						
Objectives	of the	To understand the basic idea of semi groups, monoids, Lattices,								
Course		Boolean Alg	Boolean Algebra, Grammer and Languages							
					0 0					
Course Ou	ıtline	UNIT I. M	athem	atical Logi	C!					
		Introduction	Cto	tements An	d Notation	Conn	actives · Negation			
		Conjunction	- Sta Die	iunction	totomont F	ormulas	And Truth Table			
		Condition		nd Ricondi	tional W	Vall Eo	mod Formulas			
		- Condition	ai Ai	lu Dicolui	of Form		Duality Low			
		Tautological	- L	quivalance		ulas – ith Disti	Duality Law -			
		Funtionally	Comp	lata Sats of	Connectiv	$\frac{1}{2} = 0$	ther Connectives			
		Normal Far	as: Disjunctive Normal Forms – Conjunctive Normal							
		Forma	IIS. D Drinoi	al Disjunctive r	otivo Nor	ms - C	orma Princina			
		Conjunctivo	Norm	al Forma			nnis – Tincipa			
		Conjunctive Chapter1		$\frac{11}{140} \frac{12}{12}$						
		Chapteri : S	sectio	11 1.110 1.5						
						~	~			
		UNIT II: Th	JNIT II: The Theory Of Inference for The Statement Calculus:							
		Validity Usin	ng Tri	uth Tables -	- Rules of I	nferenc	e – Consistency o			
		Premises An	d Ind	irect Metho	d of Proof	– The I	Predicate Calculus			
		predicates –	The S	Statement Fi	unctions, V	ariables	And Quantifiers -			
		Predicate Fo	rmula	s – Free An	d Bound Va	ariables	– The Universe o			
		Discourse.	Infere	ence Theory	y of The P	redicate	e Calculus : Valio			
		Formulas A	nd eq	uivalences	– Some Va	alid For	mulas Over Finite			
		Universes –	Speci	al Valid Fo	rmulas Invo	olving Q	Juantities – Theory			
		of Inference	For T	he Predicate	e Calculus –	Formu	las Involving More			
		Than One Qu	uantifi	er						
		Chapter1 : S	Sectio	n 1.4 and 1	1.5					

	UNIT III: Lattices:
	Lattices as partially ordered sets and their properties, Lattices as
	algebraic systems, sublattices, Direct products and homomorphisms,
	Some special lattices such as complete, complemented and
	distributive lattices
	Chapter4: Section 4.1, 4.1.3 to 4.1.5
	UNIT IV: Boolean Algebra
	Boolean Algebra as Lattices, Various Boolean identities, The
	switching algebra example, Sub-algebras, direct product and
	homomorphisms, join-irreducible elements, Atoms and minterms,
	Boolean forms and their equivalence, Minterms Boolean forms,
	sum of products, canonical forms, Minimization of Boolean forms
	Chapter 4: Section 4.2.1 to 4.2.2
	•
	UNIT V: Boolean functions: Boolean forms and Free Boolean
	Algebras, Values of Boolean expressions and Boolean functions.
	Representation and minimization of Boolean functions
	Chapter 4: Section 4.3 and 4.4
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill.
Recommended Text	1.J.P Trumbly and R. Monohar, Discrete Mathematical Structure
	and its application to computer Science, Tata McGraw Hills, New
	Delhi.
Reference Books	1 Kenneth H Rosan, Discrete Mathematics and its applications, 7 th
	edition, WCB/McGraw Hill Educations, New York 2008
	2 C.L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill
	Publishing Company Limited
Website and	-http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, http://www. discreate .net

- Students will be able to
- CLO 1: Semigroups and Monoids
- CLO 2: Lattices
- CLO 3: Grammars and Languages
- CLO 4: Boolean Algebra
- CLO 5:Boolean functions:

		POs							PSOs		
	1	2	3	4	5	6	1	2	3		
CLO1	3	2	3	2	1	2	3	2	2		
CLO2	3	2	3	2	1	2	3	2	2		
CLO3	3	2	3	2	1	2	3	2	2		
CLO4	3	2	3	2	1	2	3	2	2		
CLO5	3	2	3	2	1	2	3	2	2		

NME- OTHER DEPARTMENTS(NOT FOR MATHEMATICS STUDENT)- SEC I

SEMESTER -II -NME-SEC I

GROUP-C

TITLE	OF	THE	1. MATHEMATICS FOR LIFE SCIENCES-							
COURSE			NIME I CI	NME I SEC I						
Paper Nur Catagory	nber FDC		NME 1-51 Voor	Vear I Credits 2 Course D23MTN2						
Category	EDC		Somestor II			1 SC	1 2311111121			
Instruction	nal Hou	ire	Lecture	II Tute	rial	Lah Pract	ice	Tote	 a]	
ner week		11.5	2	1	<i>J</i> 11 a 1		ice	100	μ ι	
Pre-requis	site		+2 level Mathematics					-		
Objectives	nte a of	the	To introdu	To introduce the basic mathematical concents such as secure						
Course		une	vectors, ma	atrices u	used in Life	sciences a	nd giv	ve so	me applications	
			in life scier	nce.			8-		"FF	
Course Ou	ıtline		UNITI :							
			Sequences	and Dis	screte Differ	ence Equat	ions,	Sequ	uences, Limit of	
			a Sequence	ce, Dis	screte Diff	erence Eq	uatio	ns, (Geometric and	
			Arithmetic	Sequer	nces, Linear	Difference	e Equ	uation	with Constant	
Coefficients, Introduction to Pharmacokinetics										
			Chapter 5							
			UNIT II :							
			Vectors and Matrices, Vector Structure: Order Matrices Vector							
			Algebra, D	ynamics	s: Vectors C	Changing ov	er Tir	ne		
			Chapter 6							
			UNIT III :							
			Matrix Algebra, Matrix Arithmetic, Applications							
			Chapter 7							
			UNIT IV:							
			Long-Term Dynamics or Equilibrium, Notion of an Equilibrium,							
			Eigenvecto	rs, Stab	ility					
	Chapter 8									
			UNIT V:							
			Leslie Matrix Models and Eigenvalues, Leslie Matrix Models,							
			Long-Term Growth Rate (Eigenvalues), Long-Term Population							
			Structure (Corresp	onding Eige	nvectors)				
			Chapter 9							

Extended Professional	Questions related to the above topics, from various competitive					
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC					
internal component	/ others to be solved and the					
only, Not to be included	(To be discussed during the Tutorial hour)					
in the External						
Examination question						
paper)						
Skills acquired from this	Ability to model and solve the discrete biological models.					
course						
Recommended Text	1.E.N. Bodine, S. Lenhart, and L. J. Gross, Mathematics for the Life					
	Sciences, Princeton University Press, 2014.					
Reference Books	1. L. J. S. Allen, An Introduction to Mathematical Biology,					
	Pearson, 2006					
	2. J.D. Murray, Mathematical Biology - I. An Introduction,					
	Springer-Verlag, 2002.					
Website and	https://www.classcentral.com/course/swayam-biostatistics-and-					
e-Learning Source	mathematical-biology-13925					

Students will be able to

CLO 1: Define sequence, difference equations, limit of sequence and study the difference equations.

CLO 2: Define the vectors and matrix, find the order of matrix and study the dynamics of vectors

CLO 3: Define arithmetic on matrices and applications of matrices.

CLO 4: Define Eigen values and eigen vectors and study the equilibrium and stability.

CLO 5:Develop Leslie matrix models and long term population structure of the corresponding models.

		POs						PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	2	3	2	3	3	2	2	2	
CLO2	3	2	3	2	3	3	2	3	3	
CLO3	3	2	3	2	3	3	2	2	3	
CLO4	3	2	3	2	3	3	2	3	3	
CLO5	3	3	3	2	3	3	2	2	3	

SEMESTER -II -NME-SEC I

GROUP- C

Title of the Course2.MATHEMATICS FOR SOCIAL SCIENCES										
Paper Number	NME II-S	NME II-SEC I								
Category EDC	Year	Ι	Credits	2	Cou	rse	P23MTN22			
	Semester	II			Cod	e				
Instructional Hours	Lecture	Tuto	orial	Lab Pract	tice	Total				
per week	3	1				4				
Pre-requisite	+2 level M	athemat	ics							
Objectives of the	To introd	To introduce the mathematical concepts linear algebra calculus								
Course	using socia	using social sciences.								
Course Outline	UNIT-I:									
	Linear Alg	gebra, V	Vectors and	d Matrices,	, Ope	eration	ns on Vectors,			
	Matrices-D	etermin	ants, Rank	of a Matrix						
	Chapter 1:1.1 to 1.5									
	UNIT-II:									
	Statistical A	Applicat	ions of Lin	ear Algebra	, Line	ar Ap	plications,			
	Linear Algebraic Systems, Applications to Networks, Some									
	Compleme	nts on S	quare Matr	ices						
	Chapter 1	:1.6 to 1	.10							
	UNIT-III :	:								
	Differentia	l Calcul	us, What's	a Function,	Local	l Beha	vior and			
	Global Beh	navior, V	Vhat's a Fu	nction of a `	Vecto	r				
	Chapter 2									
	UNIT-IV :	:								
	Integral Ca	lculus, l	integrals and	d Areas, Fu	ndam	ental '	Theorem of			
	Integral Ca	lculus, A	Antiderivati	ve Calculus	s, An	Imme	diate			
	Application	n: Mean	and Expect	ted Values,	Frequ	lency/	Probability			
	Density Fu	nctions:	Some Case	es, People S	urviva	al				
	Chapter 3									
	UNIT-V:									
	Dynamic S	ystems-	Introduction	n, Local Inf	ormat	tion: T	The Motion			
	Law, Extra	cting In	fo from a N	lotion Law,	Class	sic Ap	proach,			
	Numerical	Approa	ch, Qualitat	ive Approa	ch, A	Newc	comer: The			
	Phase Diag	ram, So	me Politica	lly Relevan	t App	licatio	ons			
	Chapter 4									

Extended Professional	Questions related to the above topics, from various competitive					
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC					
internal component	/ others to be solved					
only, Not to be included	(To be discussed during the Tutorial hour)					
in the External						
Examination question						
paper)						
Skills acquired from this	Ability to create and analyse the mathematical models arise in social					
course	science.					
Recommended Text	1.L. Peccati, M. D'Amico, M. Cigola, Maths for Social Sciences,					
	Springer, 2018.					
Reference Books	1. S. Tan, Mathematics For Management, Life And Social					
	Sciences, Brooks/Cole, 1996					
	2. H. Anton, B. Kolman, Mathematics with Applications for					
	2. H. Anton, B. Kolman, Mathematics with Applications for the Management, Life, and Social Sciences, 2nd edition,					
	 H. Anton, B. Kolman, Mathematics with Applications for the Management, Life, and Social Sciences, 2nd edition, Academic Press, 2014. 					
Website and	 2. H. Anton, B. Kolman, Mathematics with Applications for the Management, Life, and Social Sciences, 2nd edition, Academic Press, 2014. https://www.classcentral.com/course/swayam-biostatistics-and- 					

Students will be able to

CLO 1: Define vectors and matrices and operations on vectors and matrices and calculate the rank and determinants.

CLO 2: Solve the system of linear equations and apply the matrix theory to networks and other fields

CLO 3: Define the derivative of the functions and able to analyze the local and global behaviour of the continuous functions.

CLO 4: Define integration and able to calculate the area of the continuous curve and able to calculate the expected values of continuous random variables.

CLO 5:Able to study the dynamical behaviour of the social science problems.

		POs							PSOs		
	1	2	3	4	5	6	1	2	3		
CLO1	3	2	3	2	3	3	2	2	2		
CLO2	3	2	3	2	3	3	2	3	3		

CLO3	3	2	3	2	3	3	2	2	3
CLO4	3	2	3	2	3	3	2	3	3
CLO5	3	3	3	2	3	3	2	2	3

SEMESTER -II -NME-SEC I

GROUP-C

Title of the Course	3.STATISTICS FOR LIFE AND SOCIAL SCIENCES							
Paper Number	NME III-SEC I							
Category EDC	Year	Ι	Credits	2	Cou	rse	P23MTN23	
	Semester	II			Cod	e		
Instructional Hours	Lecture	Tuto	rial	Lab Pract	ice	Tota	Total	
per week	3	1				4		
Pre-requisite	+2 level Ma	themat	ics					
Objectives of the	To enhances	s basic	skills in the	areas of da	ta col	lectio	n.To acquaint	
Course	the student	with the	e average ca	alculation in	ı vario	ous sit	uation.To	
	study about deviation of data from the central values. To know the							
	testing tools and methods .							
Course Outline	UNITI :							
	Primary a	and Sec	ondary da	ta: Collecti	on of	Data	-Primary data-	
	Secondary	data-ch	oice of m	ethods-Dire	ect p	ersona	al Observation-	
	Indirect or	al Int	erview-Info	rmation T	hroug	gh A	gencies-Mailed	
	questionnai	re Sche	edules send	d through	Enun	ierato	rs, Sources of	
	secondary of	lata- D	ata precau	tions in the	e in t	he us	e of secondary	
	data- Sampl	e quest	ionnaire				5	
	ſ	1						
	Chapter 4							

UNIT II:

Central Tendency and Dispersion: Measure of Central Tendency-Meaning- Definition – Arithmetic Mean - Median- Definition Mode - Definition -Geometric mean- Definition- Harmonic mean – Definition- Individual data- Discrete series and continuous series – Problem in all the three types.

Dispersion: Measure of dispersion- range- Quartail deviation- Mean Deviation Standard deviation - Individual data- Discrete series and continuous series – Problem in all the three types., Computation of Quartiles, Decides, Percentiles, Etc. Significance of Measuring Variation,Range, The Interquartile Range or the Quartile Deviation, Merits and Limitations, The Standard Deviation

Chapter 9 and Chapter 10

UNIT III:

Correlation and Regression: Correlation and Regression introduction -Types of correlation graphical representation of Correlation - Karl Pearson's coefficient of correlation – Rank correlation- Coefficient of rank correlation.

Regression: Significance of regression-difference between correlation and regression-RegressionLines - Regression equations **Chapter 12 and Chapter 13**

UNIT IV :

Theoretical distributions: Theoretical distributions introduction -Binomial distribution – properties of binomial distribution- simple problems in binomial distribution - Poisson distribution- simple problems in Poisson distribution -Normal distributions – properties of Normal distributions - practical problems in Normal distributions.

Chapter 19

	UNIT V:
	Sampling Theory and Testing of Significance:
	Sampling Theory and Testing of Significance introduction -
	Estimation-Hypothesis-Test of significance- Small sample test -
	Student 't' test -Large sample test for significance of average-
	Student F-test- Chi -Square test for Goodness of fit-Simple
	practical problems using - Chi – Square test
	Chapter 20
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Ability to collect and analyse the data using the statistical methods.
course	
Recommended Text	1.R.S.N. Pillai and V.Bagavathi., "Statistics", Sultan Chand, New
	Delhi, 2008
Reference Books	1. S. P. Gupta, Statistical Methods, Forty Sixth Revised Edition,
	Sultan Chand & Sons, New Delhi, 2021
	2.S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical
	Statisitics", Sultan Chand and Sons, New Delhi -2, 2011
	3.Goon A.M. Gupta. A.K. and Das Gupta, B (1987). Fundamental of
	Statistics, vol.2 World Press Pvt. Ltd., Kolkatta
	4.G.U.Yule and M.G. Kendall (1956). An introduction to the theory of
	Statistics, Charles Griffin.

Website and	nttps://alison.com/course/the-fundamentals-of-
e-Learning Source	statistics/utin_source=google&utin_medium=cpc&utin_campaign=
	2075 The-Fundamentals-of-
	Statistics&gclid=CiwKCAiw6liiBhAOFiwAl Ngncf9oiFl3Lc738RVoW
	7KdG4FiGaFXcEA4OeJQLENoFw8aUYaltWhUkRoC1QMQAvD B
	wE

Students will be able to

CLO 1: Collect the data, frame the questions and to find the sample size for their study.

CLO 2: Classify the samples and to calculate the mean, median, mode, standard deviation for discrete as well as continuous data.

CLO 3: Define the probability and random variables, some special probability distributions and do the hypothesis testing of their samples .

CLO 4:.Define Chi-square test, Yates corrections, when to use and not to use the Chi-square test.

			P	Os				PSOs	
	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	2	3	3	2	2	2
CLO2	3	2	3	2	3	3	2	3	3
CLO3	3	2	3	2	3	3	2	2	3
CLO4	3	2	3	2	3	3	2	3	3
CLO5	3	3	3	2	3	3	2	2	3

CLO 5:Do the F-test and for the samples.

SEMESTER -II -NME-SEC I

GROUP- C

Title of the Course4	4.GAME THEORY AND STRATEGY									
Paper NumberI	NME IV-S	SEC I								
Category EDC	Year	Ι	Credits	2	Cou	rse	P23MTN24			
	Semester	II			Cod	e				
Instructional Hours	Lecture	Tuto	rial	Lab Practice		Tota	al			
per week	3	1				4				
Pre-requisite -	requisite +2 level Mathematics									
Objectives of the 7	To enhance	s basic	skills in the	areas of re	sourc	ce utilization, game				
Course t	theory and	replacer	nent strateg	gies						
Course Outline	UNIII: Lincon Du	~~~~~								
	Linear Pro	ogramm	ing proble	em:						
	Introduction	ons- Lir	near Progra	mming: Ma	athem	atical	formulation of			
	linear prog	grammin	ig problem	n- Basic S	olutio	n -	Solving Linear			
	Programmi	ng pro	blem using	Graphical	solut	ion-	Unbounded and			
	Infeasible s	olution	in graphica	l methods						
	Chapter 3									
Т	Transporta	tion Pro	oblem:							
1	Fransportat	ion Prol	olem introd	luction- Ma	athem	atical	formulation of			
t	the problem - Finding Initial Basic Feasible Solution using North -									
, , , , , , , , , , , , , , , , , , ,	West Corner Rule - Row minima methods- Column minima									
1	method - Matrix Minima Method - Vogel's Approximation Method									
-	– Optimum solution – MODI method									
(Chapter 10									
1	UNITIII :									
A	Assignment Problem:									
A	Assignment Problem: Introduction – Definition of Assignment									
	Problem -Mathematical formulation of Assignment Problem -									
	Assignment Algorithm – Problem solving using Assignment									
	Algorithm-	Applic	ation of As	signment P	roblei	n: Mi	inimization case			
1	· ·	1 1								
	routing pro	blem								

	UNITIV :
	Game Theory : Two person Zero Sum Game –Maximin-Minimax
	principles- Game without saddle point -Mixed integers -Graphic
	Solution of 2 x n and mx2 Games –Dominance properties
	Chapter 17
	UNITV:
	Replacement Problem:
	Replacement Problem: Introduction about Replace problem –
	Definition Replace problem - and System Reliability - Replacement
	of Equipment that Deteriorates Gradually- Exercise Problems -
	Replacement of Equipment the Fails Suddenly-problems in
	replacement of Equipment the Fails Suddenly
	Chapter 18
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Ability to collect and analyse the data using the statistical methods.
course	
Recommended Text	1. Kanti Swarup, P.K. Gupta, Man Mohan, "Operations
	Research", Sultan Chand & Sons, Educational Publishers, New
	Delhi.2013

Reference Books	1.Panneerselvam.R, "Operations Research", 2nd Edition, PHI									
	Learning Private Limited, Delhi, 2015									
	2 Brown Karren Carrete For Him D.C. "Or anti- D. D. and 1." 7th									
	2 .Prem Kumar Gupta.Er, Hira.D.S. "Operations Research",/"									
	Edition,S.Chand & Company Pvt.Ltd.2014									
	3. Hiller.F.S & Lieberman.J "Introduction to Operation Research									
	",7 th Edition, Tata– MCGraw Hill									
	Publishing Company, NewDelhi, 2001.									
	4G. Srinivasan, "Operations Research principles and									
	applications", Second Edition, PHI Learning Private									
	Limited, New Delhi-110001, 2012.									
	5. Taha H.A., "Operations ResearchAn introduction" Prennce Hall									
	of India Private Ltd 1 st Edition New									
	Delhi (2008) .									
Website and	https://alison.com/course/the-fundamentals-of-									
e-Learning Source	statistics?utm_source=google&utm_medium=cpc&utm_campaign=									
	PPC_Tier-4_First-Click_CoursesBroad_&utm_adgroup=Course-									
	2075_The-Fundamentals-of-									
	Statistics&gclid=CjwKCAjw6liiBhAOEiwALNqncf9ojFl3Uc738RVoW									
	7KdG4FiGqFXcEA4OeJQLENoFw8gUYqltWhUkRoC1QMQAvD_B									
	wE									

Students will be able to

CLO 1: Understand the application of OR and frame a LP Problem with solution – graphic and through solver add in excel.

CLO 2: Analyze and interpret results of transportation and problem using appropriate

CLO 3: Analyze and interpret results method Solutions of assignment and problem using appropriate method.

CLO 4:.Define Game theory and finding solution in different strategy

CLO 5: Find the replacement period of equipment that fails suddenly/gradually.

		POs 1 2 3 4 5 6 3 2 3 2 3 3				PSOs			
	1	2	3	4	5	6	1	2	3
CL01	3	2	3	2	3	3	2	2	2
CLO2	3	2	3	2	3	3	2	3	3

CLO3	3	2	3	2	3	3	2	2	3
CLO4	3	2	3	2	3	3	2	3	3
CLO5	3	3	3	2	3	3	2	2	3

SEMESTER -II -NME-SEC I

GROUP- C

Title of the	e Course	5. HISTORY OF MATHEMATICAL								
Paper Nur	nber	NME- V-SI	EC I							
Category	EDC	Year	Ι	Credits	2	Cou	rse	P23MTN25		
		Semester	II			Cod	e			
Instruction	nal Hours	Lecture	T	utorial	Lab Pract	ice	Tota	ıl		
per week		3	1				4			
Pre-requis	site	+2 level Ma	them	atics						
Objectives	of the	To impart sl	cills i	n numerical an	nd quantitati	ve te	chniqu	ies.		
Course		Able to crit	ically	vevaluate vario	ous real life	e situa	ations	by resorting to		
		Analysis	f kov	issues and	factors Al	ala ta	domo	postrata various		
		Analysis 0	ксу	issues and	Idelois. Al		uemo	Justiale various		
		principles	invol	ved in solv	ing mathe	matic	al	problems and		
		thereby redu	icing	the time taken	for perform	ning j	ob fur	nctions		
Course Ou	ıtline	UNITI :								
		Numbers – HCF – LCM – Square Roots & Cube Roots- Problems on								
		numbers.								
		Chapters 1, 2, 5, 7								
		UNIT II:								
		Decimal Fractions, Simplification, Time & Distance.								
		Chapter 3,4,17								
		UNITIII:								
		Surds and Ir	dices	s – Percentage	e – Profit a	nd L	oss- S	Simple Interest.		
		Chapters 9,	10,11	, 21						
		_								
		1								

	UNITIV :
	Ratio and Proportion – Partnership – Allegation or Mixture-
	Probability.
	Chapters 12, 13, 20, 31
	UNITV:
	Average – Problems on Age-Calender.
	Chapters 6,8,27
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / / TNPSC / others to be solved
internal component	(To be discussed during the Tutorial hour)
only, Not to be	
Included in the External	
examination question	
Skills acquired from	Ability to solve problems using the mathematical l methods
this course	Tomey to solve problems' using the mathematical rinemous.
Recommended Text	1. <u>Text Book:</u>
	Dr.R.S.Aggarwal, "Quantitative Aptitude for Competitive
	Examinations", S.Chand & Company Ltd., Ram Nagar, New Delhi -
	2007.
Website and	Link: https://books.shunyafoundation.com/book-quantitative-aptitude-
e-Learning Source	hy_r_s_aggarwal_published_by_s_chand_anglish/dp/ODTPCU2E
C C	

Students will be able to

CLO 1: Collect the data, frame the questions and to find the sample size for their study.

CLO 2: Classify the samples and to calculate the mean, median, mode, standard deviation for discrete as well as continuous data.

CLO 3: Define the probability and random variables, some special probability distributions and do the hypothesis testing of their samples .

CLO 4: Define Chi-square test, Yates corrections, when to use and not to use the Chisquare test.

			PO	Os			PSOs 1 2 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2		
	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	2	3	3	2	2	2
CLO2	3	2	3	2	3	3	2	3	3
CLO3	3	2	3	2	3	3	2	2	3
CLO4	3	2	3	2	3	3	2	3	3
CLO5	3	3	3	2	3	3	2	2	3

CLO 5:Do the F-test for the samples.